Abstract

A series of iron(III)-selective chelating resins have been modeled after the structural features of the naturally occurring siderophore compounds with hydroxamate, catecholate and salicylate iron binding groups. Amberlite IRC-50 was derivatized via an acid chloride intermediate to produce poly(hydroxamic acid) (IRC-50 PHA/N-H and IRC-50 PHA/N- CH 3), poly(catecholate) (IRC-50 PEDA 2,3-DHBAD and IRC-50 PEDA 3,4-DHBA) and poly(salicylate) (IRC-50 PEDA 2-HBAD) chelating resins with enhanced iron(III) binding capacity. The poly(hydroxamic acid) IRC-50 PHA/N-CH 3 was produced in 57% yield, the highest conversion yet reported for such derivatizations. This is the first report of a catechol or salicylate derivatization of Amberlite IRC-50. The highest overall iron(III) binding capacities yet reported for poly(hydroxamic acid) modifications of commercially available polymer supports were obtained for IRC-50 PHA/N-H (1.75 mmol Fe/g dry resin) and IRC-50 PHA/N-CH 3 (1.52 mmol Fe/g dry resin). IRC-50 PHA/N-H was also found to be an effective iron chelator when tested at ambient environmental conditions. Selectivity for iron- (III) was also determined by measuring Fe 3+ binding capacity in the presence of Ca 2+. UVVis spectroscopy with photoacoustic detection was used to assign the coordination environment of iron(III) in these chelating resins as bis-(FeL 2) and tris-(FeL 3) chelates. As an alternative synthetic approach, a poly(amidoxime) (PAO) chelating resin was synthesized by polymerization of appropriate monomers. Comparison between the two synthetic approaches showed that PAO bound a greater amount of iron(III) at flow-through column conditions, while IRC-50 PHA/N-H exhibited a greater iron(III) binding capacity at batch equilibration conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.