Abstract
AbstractInterpenetrating polymer networks (IPNs) combining polyurethane (PU) and poly(ethylene glycol) diacrylate (PEGDA) networks were prepared with simultaneous polymerization. PU was synthesized from biocompatible and biodegradable poly(ε‐caprolactone) diol, and the hydroxyl group of poly(ethylene glycol) was substituted with a crosslinkable acrylate group. The effects of the PU/PEGDA compositions and the crosslink density of PU and PEGDA on the thermal properties, swelling ratio, surface energy, mechanical properties, and morphologies were investigated. The mechanical properties of PEGDA networks were improved by the presence of PU networks, particularly in the 75% PU/25% PEGDA IPNs. All PU/PEGDA IPNs showed a microphase‐separated structure with cocontinuous morphology, as observed by atomic force microscopy, which was in agreement with the results of swelling ratio and dynamic mechanical thermal analysis measurements. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.