Abstract

Bioadhesive polymers are natural or synthetic materials that can be used for soft tissue repair. The aim of this investigation was to develop an injectable, bioadhesive hydrogel with the potential to serve as a synthetic replacement for the nucleus pulposus of the intervertebral disc or as an annulus closure material. Branched copolymers of poly(N-isopropylacrylamide) (PNIPAAm) and poly(ethylene glycol) (PEG) were blended with poly(ethylene imine) (PEI). This three component injectable system can form a precipitated gel at physiological temperature due to the phase transition of PNIPAAm. The injection of glutaraldehyde into the gel core will adhere the implant to the surrounding tissues. (1)H NMR results indicated the successful physical incorporation of PEI into the PNIPAAm-PEG network by blending. In addition, the covalent crosslinking between the amine functionalities on the PEI and the aldehyde functionalities on the glutaraldehyde was verified using FTIR difference spectroscopy. Mechanical characterization of these blends showed a significant increase (p < 0.05) in compressive modulus following glutaraldehyde injection. The in vitro bioadhesive force studies with porcine skin showed a significant increase (p < 0.05) in the mean maximum force of detachment for PNIPAAm-PEG/PEI gels when glutaraldehyde was injected into the gel core. The results of this study indicate that the reactivity between amines and aldehyde functionalities can be exploited to impart bioadhesive properties to PNIPAAm-PEG/PEI copolymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.