Abstract
ABSTRACTIndium oxide-doped hematite xIn2O3·(1-x)α-Fe2O3 (x = 0.1-0.7) solid solution systems were synthesized using mechanochemical activation. The microstructures, magnetic and thermal properties of the system were dependent on In2O3 molar concentration x and ball milling time. XRD results showed that the completion of In3+ substitution of Fe3+ in hematite lattice occurs after 12 h ball milling for x = 0.1. For x = 0.3, 0.5 and 0.7, the substitutions between In3+ and Fe3+ into hematite and In2O3 lattices occur simultaneously. The lattice parameters of hematite and In2O3 vary as a function of ball milling time. The change in these parameters was due to ions substitution between In3+and Fe3+ and the decrease in grain sizes. Mössbauer spectra of the system with x = 0.3 were fitted with three sextets and two quadrupole-split doublets after milling, representing In3+ substitution of Fe3+ in hematite lattice and Fe3+ substitution of In3+ in two different sites of In2O3 lattice. TGA results showed that the hematite decomposition is enhanced due to the smaller hematite grain size. The crystallization of hematite and In2O3 was suppressed with the drops of enthalpy values due to the stronger solid-solid interactions after ball milling. These caused gradual In3+-Fe3+ substitution in hematite/In2O3 lattices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.