Abstract

Surgical adhesive is the optimal candidate for the replacement of traditional mechanical wound closure. In our paper, mussel adhesive proteins inspired hydrogel adhesive was prepared with 3, 4-dihydroxyphyenylanine acrylamide (DOPA-AA), poly (ethylene glycol) diacrylate (PEGDAA) and thiolated chitosan (CSS) by UV irradiation. DOPA-AA, containing catechol group and vinyl group, was successful synthesized and characterized by FTIR and 1HNMR. The gelation time, equilibrium water content, degradation, materials properties and adhesive strength of the hydrogels were studied. We found that the gelation time was retarded and the materials mechanical strength was decreased because of the inhibitory effect of catechol group. Equilibrium water content was slightly affect by the increasing concentration of DOPA-AA (1–5%). Nevertheless, catechol group can remarkably improve the adhesive properties because of the complex and durable interactions of the hydrogel, especially, the interaction between the thiol group of CSS and catechol group of DOPA-AA, which also greatly slowed down the degradation of the adhesive hydrogels. CSS and DOPA-AA was introduced to ensure the adhesive properties, DOPA-AA lend the adhesive nature to hydrogel and CSS can protect the catechol group from oxidation and enhance durable adhesion. Moreover, cytotoxicity of the resulting hydrogels showed that the L929 cell viability was weaken, it mostly probably induced by the catechol oxidation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.