Abstract

The prime aim of this research is to discover new, eco-friendly approaches to reducing agents for manufacturing silver nanoparticles (AgNPs) from fresh fruiting bodies of the edible mushroom Hypsizygus ulmarius (Hu). The confirmation of Hu-mediated AgNPs has been characterized by UV visible spectroscopy, XRD, FTIR, SEM with EDX, HRTEM, AFM, PSA, Zeta poetical and GCMS analysis. The absorption peak of Hu-AgNPs at 430 nm has been confirmed by UV–visible spectroscopy analysis. The findings of the particle size study show that AgNPs have a size distribution with an average of 20 nm. The Zeta potential of NPs reveals a significant build-up of negative charges on their surface. The additional hydrate layers that occurred at the surface of AgNPs are shown in the HR-TEM morphology images. The antibacterial activity results showed that Hu-AgNPs were highly effective against both bacterial pathogens, with gram-positive (+) and gram-negative (−) pathogens having a moderate inhibition effect on K. pneumoniae (5.3 ± 0.3 mm), E. coli (5.3 ± 0.1), and S. aureus (5.2 ± 0.3 mm). Hu-AgNPs (IC50 of 50.78 μg/mL) were found to have dose-dependent cytotoxic action against human lung cancer cell lines (A549). Inhibited cell viability by up to 64.31% after 24 h of treatment. To the best of our knowledge, this is the hand information on the myco-synthesis of AgNPs from the H. ulmarius mushroom extract and the results suggest that it can an excellent source for developing a multipurpose and eco-friendly nano product in future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call