Abstract
To stabilize SN 2 transition state-like penta-coordinate carbon species, triaryl-substituted cationic carbon compounds bearing a moderately flexible 7-6-7-ring skeleton with sulfur donors were synthesized and characterized. Electronic effects of para substituents (R=Cl, F, H, CH3 , SMe, OMe) of the two equatorial aryl groups bound to the cationic central carbon were investigated systematically along with a planar bidentate thioxanthene derivative. X-ray analysis on their solid-state structures showed that the parent (R=H), chloro-, fluoro- and methyl-derivatives were tetracoordinate carbon (sulfonium) structures, while the p-MeO and thioxanthenyl system were pentacoordinate carbocation structures. The Hammett substituent constants for the para substituents (σp + ) correlates well with the bonding in these compounds. The methylthio-derivative with intermediate Hammett substituent constants (p-MeS; σp + =-0.60) showed a tetracooridnate solid-state structure, though solution UV-Vis properties suggested the presence of a penta-coordinate structure. These findings amount to the first unambiguous solution evidence of the hypervalent apical 3c-4e interactions in pentacoordinate carbon compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.