Abstract

In this paper, a series of cellulose-based hydrophobic associating polymers were prepared by homogeneous acylation of microcrystalline cellulose with long-chain acyl chlorides including octanoyl, lauroyl, and palmitoly chlorides in the solvent of N,N-dimethylacetamide/lithium chloride (DMAc/LiCl) using pyridine as acid scavenger. Through controlling the chain length of fatty acyl chlorides and the molar ratio of acyl chlorides vs anhydroglucose unit, the hydrophobic cellulose derivatives with degrees of substitution in the range of 0.02–1.75 were successfully obtained. The chemical structures and properties of these hydrophobic derivatives were characterized by elemental analysis, FT-IR, CP/MAS 13C NMR, X-ray diffraction, and the thermogravimetry analysis. It was also found that, the cellulose-based polymers achieved an excellent solubility in organic solvents, such as benzene, methylbenzene, and pyridine, with the introduction of hydrophobic side chain into the cellulose backbone. Furthermore, it was found that these hydrophobic cellulose derivatives could self-assemble into spherical nanoparticles in aqueous solution, which indicates a tremendous potential of applications in pharmaceutical and medical fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.