Abstract

ABSTRACTRoom temperature sol-gel synthesis and optical characterization of highly transparent silica glass for photovoltaic (PV) applications is presented in this paper. Tetraethyl orthosilicate (TEOS), Ethanol, Hydrochloric acid (HCl) and deionized water were used as precursors in the volumetric ratio of 4:4.3:0.1:3.2 ml. Silica glass of thickness in the range of 0.5-1 cm were obtained with an average transmittance of 93% and absorption coefficient (α) of 0.08 cm−1 in a wide wavelength window of 350-1100 nm. Application of the developed sol-gel silica glass on solar ray concentration, anti-reflective coating (ARC) and effect of surface passivation on silicon wafers were examined. Carrier lifetime of the sol-gel silica passivated silicon substrate was 16 s and the calculated surface recombination velocity of the was 2200 cm/sec. Very low value of α, high transparency in a wide spectral window and effective surface passivation on silicon suggest that sol-gel processed silica glass can be a potential cost effective candidate for different PV applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.