Abstract

The synthesis and characterization of Ta-TMS1, a new member of a growing family of hexagonally packed transition-metal oxide mesoporous molecular sieves (termed TMS1) is described. Ta-TMS1 exhibits a hexagonal array of pores which can be varied in size from 20 to 40 A and surface areas of over 500 m2/g. The thermal and hydrothermal stabilities of Ta-TMS1 are 500 and 450 °C, respectively, making this system the most stable transition-metal oxide molecular sieve yet isolated. The high hydrocarbon adsorption capacities of this material make it a promising candidate as a catalyst support for hydrocarbon re-forming processes. The synthesis of this material was achieved by a novel approach involving the careful hydrolysis of long-chain primary amine complexes of Ta(OEt)5. This ligand-assisted templating mechanism represents a new approach to the synthesis of porous materials in that the inorganic precursor is covalently bonded to the template throughout synthesis. The high thermal stability, ease of synthesis a...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.