Abstract

Three complexes, namely, [Cu(salbn)] (1), [Cu(salbn)Gd(NO3)3·H2O] (2), and [Cu(salbn)Eu(NO3)3·H2O] (3) where salbn = N,N′-1,3-propylenebis (salicylaldiminato) have been synthesized and characterized by elemental analyses, ICP-AES, IR, UV, NMR, MS, EDX, powder XRD, and EPR spectroscopies. The EDX results suggest the presence of two different metal ions in heteronuclear complexes (2) and (3). The ligand(salbn), complex (1), and complex (3) crystallize in triclinic system while complex (2) crystallizes in monoclinic system. The EPR studies suggest that [Cu(salbn)] complex is tetragonally coordinated monomeric copper(II) complex with unpaired electron in the dx2-y2 orbital and spectral features that are the characteristics of axial symmetry while complex (2) in DMF solution at liquid nitrogen temperature exhibits an anisotropic broad signal around g ~ 2.03 which may suggest a weak magnetic spin-exchange interaction between Gd(III) and Cu(II) ions. The fluorescence intensity of Eu(III) decreased markedly in the complex (3).

Highlights

  • The spectroscopic and unique properties of copper(II)lanthanide(III) complexes have become a subject of intense research interest with coordination chemists because of their wide arrays of applications in electroluminescent devices, biomedicine, MRI, magneto magnets, and many more [1,2,3,4,5]

  • Lanthanid(III) metals were estimated from Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) by using ARCOS Spectrometer (Germany)

  • Energy-dispersive X-ray spectroscopy (EDX) spectra were recorded on JEOL and JEM-7600F models

Read more

Summary

Introduction

The spectroscopic and unique properties of copper(II)lanthanide(III) complexes have become a subject of intense research interest with coordination chemists because of their wide arrays of applications in electroluminescent devices, biomedicine, MRI, magneto magnets, and many more [1,2,3,4,5]. The structural chemistry of the lanthanides is interesting as they have a strong tendency to form complexes with higher coordination numbers up to twelve Because of their large size and their tendency to form ionic bonds rather than covalent bonds, lanthanide(III) ions may form complexes having higher coordination numbers with monodentate, simple bidentate or polydentate ligands possessing small chains [10]. Akine made a review on design of novel ion recognition systems based on salen (H2 salen = N,N󸀠-disalicylideneethylenediamine) or related ligands [12].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call