Abstract

Graphene nanosheets were used as additives in the preparation of polycrystalline diamond compact (PDC) composites to overcome the low fracture toughness and heat resistance of PDC composites. The PDC composites were then sintered at a pressure of 5.8 GPa and a temperature of 1500 °C. Subsequently, the mechanical properties, microstructure, and toughness mechanism of PDC composites modified by graphene nanosheets were studied. The PDC sample prepared by adding 0.2 wt% graphene nanosheets had the best comprehensive performance. Compared with the sample without graphene nanosheets, the impact toughness of the sample with 0.2 wt% graphene nanosheets improved by 29.78%, while the heat-resistant temperature increased by 34.5 °C. The hardness and wear resistance of the sample did not show any significant decrease and were essentially the same as those of the unmodified PDC composite sample. Two factors were found to influence the toughening mechanism. On the one hand, the lubricating effect of graphene promoted particle rearrangement, pore filling, and mutual sliding between adjacent diamond particles, which resulted in a denser and more uniform PDC composite material. On the other hand, the graphene nanosheets at the triangular grain boundaries were interspersed in the cobalt binder and led to the formation of a unique structure of “cobalt-graphene nanosheets”. This unique structure acted as the skeletal structure and effectively prevented fracture crack propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.