Abstract

Heavy metals like Cd and Hg removal using novel graphene oxide/ferrous sulfate (GO/FeSO4) was taken for experimental studies and analysis. In this work, GO/ FeSO4 was synthesized by both modified Hummer's and chemical precipitation method. The synthesized composite was characterized by field emission scanning electron microscope (FESEM), Fourier transform infrared (FTIR) spectroscopy, and Raman spectroscopy for their properties. Brunauer Emmett-Teller (BET) analysis was characterized for the surface analysis of the prepared nanocomposites. FESEM images exhibit flake-like structures in surface morphological studies. FTIR peaks confirmed the presence of carboxyl groups in GO. Raman spectroscopy intensity peak [ID/IG ratio1.18] confirmed the synthesized sample was GO. The experimental parameters such as initial concentration, pH, and adsorbent dosage were optimized to achieve maximum heavy metal removal efficiency. The influence of initial heavy metal concentration (0.2-1mg/L), pH of solution (pH 3-7), and adsorbent dosage (1-5g/L) was studied and reported. Adsorption kinetic studies were performed and the process was found to fit well with pseudo-second-order kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.