Abstract

AbstractA novel biosorbent was developed by the crosslinking of an anionic biopolymer, calcium alginate, with glutaraldehyde. The glutaraldehyde‐crosslinked calcium alginate (GCA) was characterized by Fourier transform infrared spectroscopy and porosity and surface area analysis. The batch equilibrium and column flow adsorption characteristics of fluoride onto the biosorbent were studied. The effects of the pH, agitation time, concentration of adsorbate, and amount of adsorbent on the extent of adsorption were investigated. The experimental data were fitted to the Langmuir and Freundlich adsorption isotherms. The data were analyzed on the basis of the Lagergren pseudo‐first‐order, pseudo‐second‐order, and Weber–Morris intraparticle diffusion models. The maximum monolayer adsorption capacity of the GCA sorbent as obtained from the Langmuir adsorption isotherm was found to be 73.5 mg/g for fluoride. The χ2 and sum of squares of the error analysis were used to correlate the equilibrium isotherm models and kinetics. In addition, breakthrough curves were obtained from column flow experiments. The experimental results demonstrate that the GCA beads could be used for the defluoridation of drinking water through adsorption. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call