Abstract

The Fe(3+) chelating ability of some curcumin glucosyl derivatives (Glc-H; Glc-OH; Glc-OCH(3)) is tested by means of UV and NMR study. The pK(a) values of the ligands and the overall stability constants of Fe(3+) and Ga(3+) complexes are evaluated from UV spectra. The only metal binding site of the ligand is the beta-diketo moiety in the keto-enolic form; the glucosyl moiety does not interact with metal ion but it contributes to the stability of metal/ligand 1:2 complexes by means of hydrophilic interactions. These glucosyl derivatives are able to bind Fe(3+) in a wide pH rage, forming complex species thermodynamically more stable than those of other ligands commonly used in the treatment of iron deficiency. In addition they demonstrate to have a poor affinity for competitive biological metal ions such as Ca(2+). All ligands and their iron complexes have a good lypophilicity (log P > -0.7) suggesting an efficient gastrointestinal absorption in view of their possible use as iron supplements in oral therapy. The ligand molecules are also tested for their antioxidant properties in "ex vivo" biological system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.