Abstract

ABSTRACTGd(1−x)SrxCoO(3−Δ) (GSC) is a promising cathode material system for use in IT-SOFCs due to its high catalytic activity for oxygen reduction and appreciable conductivity. However, it has a high thermal expansion coefficient that is unmatched to the common IT-SOFC electrolyte material, Ce0.8Gd0.2O(2−Δ) (CGO). Gd0.8Sr0.2CoO(3−Δ) (GS20C) was determined to provide the best balance of properties as a base composition in the GSC system for further study. GS20C exhibited electrical conductivity of 400 S cm−1 at 600°C and a linear thermal expansion coefficient of 23 ppm/°C. Manipulation of the Co-site in GS20C by Fe substitution to form Gd(0.8)Sr(0.2)Co(1−y)FeyO(3−Δ) (GS20CFY, Y= 0, 20, 40, 60, 80, 100 atomic%) resulted in a dramatic decrease in the thermal expansion coefficient to a level close to that of the electrolyte (∼13 ppm/°C). However, the decrease in thermal expansion was accompanied by a large decrease in the conductivity as the iron content was increased in the system (to ∼10 S cm−1). Alternatively, formation of GS20C/CGO composite cathodes resulted in thermal matching with the electrolyte material up to the IT-SOFC operating temperature of approximately 600°C with the maintenance of high electrical conductivity. Composite GS20C/CGO cathodes may reduce the problems associated with poor GSC thermal matching to the electrolyte without compromising other important cathodic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.