Abstract

ABSTRACT A series of glycidylazide–poly(ethylene glycol) (GAP-PEG) copolymers were synthesized by cationic ring-opening polymerization of epichlorohydrin (ECH) in the presence of poly(ethylene glycol) (PEG) using borontrifluoride etherate (BF3-etherate) as catalyst, followed by the conversion of the CH2Cl groups of poly(epichlorohydrin) (PECH) to CH2N3 groups. The formation of PECH-b-PEG-b-PECH triblock copolymers was confirmed by IR, 1H NMR, and 13C NMR spectroscopy. The corresponding GAP-b-PEG-b-GAP triblock copolymers were characterized by UV, IR, 1H NMR, and 13C NMR spectroscopy. The copolymers have shown an increment in their molecular weights as the higher analogue molecular weight PEGs were used in the polymerizations. The thermogravimetry-differential thermogravimetry (TG-DTG) and differential scanning calorimetry (DSC) studies of the GAP triblock copolymers indicate an increase in the decomposition temperature of the azide groups of GAP block in the copolymers caused by the introduction of higher molecular weight PEG blocks. GAP-PEG copolymers have shown lower glass transition temperatures than the homo glycidylazide polymer. The nitrogen content of the GAP-PEG copolymers was estimated by various methods and the value was in good agreement with the estimated values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.