Abstract

Layered 2D van der Waals (vdW) materials such as graphene and transition metal dichalcogenides have recently gained a great deal of scientific attention due to their unique properties and prospective applications in various fields such as electronics and optoelectronics, sensors and energy. As a direct bandgap semiconductor in both bulk and monolayer forms, ReS2 stands out for its unique distorted octahedral structure that results in distinctive anisotropic physical properties; however, only a few scalable synthesis methods for few-layer ReS2 have been proposed thus far. Here, the growth of high-quality few-layer ReS2 is demonstrated via sulfurization of a pre-deposited rhenium oxide coating on different semiconductor material nanowires (GaN, ZnS, ZnO). As-produced core-shell heterostructures were characterized by X-ray diffraction, scanning and transmission electron microscopy, micro-Raman spectroscopy and X-ray absorption spectroscopy. Experimental characterizations were supported by total energy calculations of the electronic structure of ReS2 nanosheets and GaN, ZnS, and ZnO substrates. Our results demonstrate the potential of using nanowires as a template for the growth of layered vdW materials to create novel core-shell heterostructures for energy applications involving photocatalytic and electrocatalytic hydrogen evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.