Abstract

This paper reports a novel, low-cost, and facile approach to prepare a hybrid material consisting of zeolite, Fe3O4, and graphitic carbon nitride as a sorbent to remove methyl violet 6b (MV) from aqueous solutions. To improve the performance of the zeolite for the removal of MV, graphitic carbon nitride (with different C-N bonds and conjugated π region) was used. Also, to perform an easy and fast separation of sorbent from aqueous media, magnetic nanoparticles were incorporated into the sorbent. The prepared sorbent was characterized by different analytical techniques such as X-ray diffraction analysis, Fourier transform infrared, field emission scanning electron microscopy, and energy-dispersive X-ray analysis. The effects of four parameters of initial pH, initial concentration of MV, contact time, and the adsorbent amount on the removal process were investigated and optimized by the central composite design method. The removal efficiency of MV was modeled as a function of the experimental parameters. Affording to the proposed model, the values of 10mg, 28mg L-1, and 2min were selected as optimum condition for adsorbent amount, initial concentration, and contact time, respectively. Under this condition, the optimal removal efficiency was 86% ± 2.8 which were close to the predicted value of the model (89%). Therefore, the model could fit and predict the data. The maximal adsorption capacity of sorbent derived from Langmuir's isotherm was 384.6mgg-1. The applied composite can efficiently remove MV from various wastewater samples (paint, textile industries, pesticide production wastewater samples, and municipal wastewater).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call