Abstract

AbstractLinalool (LIN) and vinyl acetate (VA) were copolymerized by benzoyl peroxide (BPO) in p‐xylene at 60°C for 90 min. The system follows nonideal kinetics: Rpα[I]0.6[LIN]1.2[VA]1.1. It results in the formation of alternating copolymer as evidenced from reactivity ratios as r1 (VA) = 0.01, r2 (LIN) = 0.0015, which have been calculated by Kelen–Tudos method. The overall activation energy is 82 kJ/mol. The FTIR spectrum of the copolymer shows the presence of the band at 3425 cm−1 due to alcoholic group of LIN and at 1641 cm−1 due to >CO group of VA. The 1H‐NMR spectrum shows peaks at 7.0–7.7 δ due to hydroxy proton of LIN and at 1.0–1.4 δ due to acetoxy protons of VA. 13C‐NMR spectrum of copolymer shows peaks at 167 ppm due to acetoxy group and at 75–77 ppm due to COH group. The Alfrey–Price Q–e parameters for LIN has been calculated as Q2 = 1.24 and e2 = 3.11. The copolymer is highly thermally stable and has a glass transition temperature (Tg) of 85°C, evaluated from DSC studies. The mechanism of copolymerization has been elucidated. This article also reports measurement of Mark–Houwink constants in THF at 25°C by means of GPC as α = 0.8 and K = 3.0 × 10−4 dl/g. The thermal decompositions of copolymer are established with the help of TGA technique. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1134–1143, 2004

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call