Abstract

Fluorinated chiral liquid-crystalline elastomers (LCEs) were graft copolymerized by a one-step hydrosilylation reaction with polymethylhydrogenosiloxane, a fluorinated LC monomer 4-(2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctanoyloxy)phenyl 4-(undec-10-enoyloxy)benzoate (PPUB) and a chiral crosslinking LC monomer (3R,3aR,6S,6aR)-6-(undec-10-enoyloxy)hexahydrofuro[3,2-b]furan-3-yl 4′-(4-(allyloxy)benzoyloxy)biphenyl-4-carboxylate (UHAB). The chemical structure, liquid-crystalline behavior and polarization property were characterized by use of various experimental techniques. The effective crosslink density of the LCEs was characterized by swelling experiments. The thermal analysis results showed that the temperatures at which 5% weight loss occurred were greater than 250°C for all the LCEs, and the residue weight nearby 600°C increase with increasing chiral crosslinking components in the polymer systems. All the samples showed chiral smectic C mesophase when they were heated. The glass transition temperature and mesophase-isotropic phase transition temperature of fluorinated elastomers increased slightly with increase of chiral crosslinking mesogens in the polymer systems, but the enthalpy changes of mesophase-isotropic phase transition decreased slightly. In XRD curves, all the samples exhibited strong sharp reflections at small angles suggesting smectic layered packing arrangement. These fluorinated chiral LCEs showed 0.1–0.2μC/cm2 of spontaneous polarization with increasing chiral crosslinking component.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.