Abstract
Bentonite-magnetite nanocomposite adsorbent (BMNC) was made and investigated for its adsorption removal of Cr(VI) from an aqueous solution. This adsorbent was prepared by the coprecipitation method from sodium bentonite (BNa) with iron chloride solution at controlled pH and under an inert atmosphere. These adsorbents were characterized by atomic absorption spectrophotometer (AAS), Brunauer–Emmett–Teller (BET), dynamic light scattering (DLS), scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analyses. Particle size of BMNC was in the range of 15 to 95 nm as per DLS. The intercalation of magnetite nanoparticles onto the bentonite clay increased its specific surface area from 142 to 177 m2/g as per BET analysis. Experimental design optimization results in 96.5% of Cr(VI) removal from the water solution at optimized adsorption parameters viz., adsorption time of 101 min, pH of 1.95, adsorbent dose of 1.12 g/L, and initial Cr(VI) concentration of 36.2 mg/L. The results of these studies demonstrate that the BMNC performs well. Moreover, the adsorption of Cr(VI) onto the BMNC was found to be the best fit with Langmuir isotherm (R2 = 0.9984) and a maximum adsorption capacity of 98 mg/g. The kinetics of the adsorption process was found to be a pseudo-second-order model (R2 = 0.9912). The BMNC also showed favourable reusability for adsorbate Cr(VI) ions removal from the water solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.