Abstract

The bottom tanks used to store crude oil and derivatives are the most vulnerable to corrosion, because despite the presence of cathodic protection, their contact with corrosive media can cause metal corrosion, which is found in most oil tanks of Iraq. In this study, a resole phenolic resin prepared in an alkaline medium and a plasticizer were used to impart elasticity to the polymer to prepare a self-hardening polymer material with high resistance to acid and temperature up to 170℃. The new synthesized polymers were identified by various spectroscopic methods, such as FTIR, 1HNMR, 13CNMR, and TGA/DTA. The morphology of the polymer surface was also studied by SEM and AFM. This study mainly focused on coat bottom-base oil tanks with fast-curing high-strength polymers. The effectiveness and resistance of synthetic polymers were studied in various tests in acidic and alkaline media. Laboratory experiments showed that the most efficient effective and lowest cost is 1:3 concentration of package1: package 2 that covers 0.6 mm thickness of metals and resists pressure up to 5226.4N. The economic cost of packaging materials was also studied, and it was found that the cost of a tank bottom covering an area of 706.5 m2 was estimated to be 4669.965$.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call