Abstract

To elucidate the effects of uniformity of molecular architecture on gel properties, a protein polymer based on the elastin-mimetic repeat sequence [(Val-Pro-Gly-Val-Gly)4(Val-Pro-Gly-Lys-Gly)], 1 (Lys-25), was synthesized using genetic engineering and microbial protein expression. The regularly placed lysine residues in poly(Lys-25) underwent selective reaction with electrophilic cross-linkers under mild conditions in either dimethyl sulfoxide or aqueous phosphate buffer to afford solvent-swollen networks. Chemical derivatization and spectroscopic investigations of the cross-linking reaction indicated that approximately 85% of the lysine residues reacted with the cross-linker. The protein hydrogel exhibited reversible, temperature-dependent expansion and contraction with an estimated midpoint temperature for the phase transition at 35 °C. Scanning electron microscopy (SEM) investigations indicated profound differences in morphology between protein gels prepared in organic vs aqueous solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.