Abstract

Double-walled carbon nanotubes (DWNTs) were synthesized in a large scale by a hydrogen arc discharge method using graphite powders or multi-walled carbon nanotubes/carbon nanofibers (MWNTs/CNFs) as carbon feedstock. The yield of DWNTs reached about 4 g/h. We found that the DWNT product synthesized from MWNTs/CNFs has higher purity than that from graphite powders. The results from high-resolution transmission electron microscopy observations revealed that more than 80% of the carbon nanotubes were DWNTs and the rest were single-walled carbon nanotubes (SWNTs), and their outer and inner diameters ranged from 1.75 to 4.87 nm and 1.06 to 3.93 nm, respectively. It was observed that the ends of the isolated DWNTs were uncapped and it was also found that cobalt as the dominant composition of the catalyst played a vital role in the growth of DWNTs by this method. In addition, the pore structures of the DWNTs obtained were investigated by cryogenic nitrogen adsorption measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.