Abstract
Quantum-dots-tagged poly (styrene-acrylamide-acrylic acid) microspheres (QDsAAMs) were synthesized and modified with hydrazine hydrate through hydrazinolysis. Azidocarbonyl groups, which can be rapidly coupled with proteins under mild conditions, were introduced onto the surface of QDsAAM using azido reaction. Bovine serum albumin (BSA) was selected as model protein to be covalently immobilized on the azidocarbonyl QDsAAM. Instruments such as fluorescence microscope, optical microscope, confocal laser scanning microscope, UV-visible spectrometer, Fourier transform infrared spectrometer, size analyzer, and fluorescence spectrophotometer were used to characterize QDsAAM. Results showed that QDsAAM had a regular double-layer spherical shape and an average diameter of 11.2 microm. It also displayed high fluorescence intensity (lambda(ex)/lambda(em) = 250 nm/370 nm), which showed linearity with concentrations ranging from 3.0 x10(-3) to 90.0 x10(-3) g.L(-1). In addition, external factors such as pH and ionic strength exerted little influence on fluorescent characteristic. BSA immobilization indicated that QDsAAM with azidocarbonyl groups could be covalently coupled with BSA at the rate of 40 x10(-3) g/g (BSA/QDsAAM), while fluorescence linearity correlation was also found. This functional azidocarbonyl QDsAAM with sensitive fluorescence and active azidocarbonyl groups could be used as a promising fluorescent probe for quantitative detection, protein immobilization, and early rapid clinical diagnostics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.