Abstract
A vinyl-terminated polycaprolactone has been developed for tissue engineering applications using a one-step synthesis and functionalization method based on ring opening polymerization (ROP) of ε-Caprolactone, with hydroxyl ethyl vinyl ether (HEVE) acting both as the initiator of ROP and as photo-curable functional group. The proposed method employs a catalyst based on aluminium, instead of the most popular Tin(II) 2-ethylhexanoate, to reduce the cytotoxicity. Following the synthesis of the vinyl-terminated polycaprolactone, its reaction with fumaryl chloride (FuCl) results in a divinyl-fumarate polycaprolactone (VPCLF). The polymers obtained were thoroughly characterized using Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC) techniques. The polymer has been successfully employed, in combination with N-vinyl pyrrolidone (NVP), to fabricate films and computer-designed porous scaffolds by micro-stereolithography (μ-SL) with gyroid and diamond architectures. Characterization of the networks indicated the influence of NVP content on the network properties. Human mesenchymal stem cells adhered and spread onto VPCLF/NVP networks showing good biological properties and no cytotoxic effect. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Tissue Engineering and Regenerative Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.