Abstract

A series of fully-acylated dextrin esters (DS = 3) with varying side-chain lengths (C2–12) were synthesized by heterogeneous esterification using trifluoroacetic anhydride/carboxylic acid. The influence of side-chain lengths on structure and properties of dextrin esters were investigated by structural, thermal, mechanical and hydrophobic analysis. The thermal stability of dextrin was enhanced by esterification, presenting ca. 40–60 °C higher decomposition temperatures than that of neat-dextrin. The transition temperatures of melting and crystallization were not observed for all dextrin esters because they were amorphous polymers. The glass transition temperature (Tg) was not observed in dextrin but was observed in dextrin esters. As increasing side-chain length, Tgs of dextrin esters decreased ranged from 162.2 °C (C2) to 49.2 °C (C12). Colorless and transparent dextrin ester films were prepared to measure the film properties. Tensile strength of dextrin ester films tended to decrease with increasing side-chain lengths, whereas the elongation at break increased. And, dextrin ester films showed significantly increased hydrophobicity with a contact angle of up to 102° (C12).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call