Abstract

The objectives of this study were to develop a simple and reproducible method for the preparation of the hydrogel precursor dextran-methacrylate and to conduct a visual observation of the interior structure of the swollen dextran-methacrylate hydrogel with minimum artifacts. A dextran-methacrylate hydrogel precursor was synthesized by reacting dextran with methacrylic anhydride in the presence of triethylamine as a catalyst. The effects of reaction time, temperature, concentration, and catalyst amount were studied to obtain a wide range of degree of substitution (DS) in dextran by methacrylate. The dextran-methacrylate synthesized showed an enhanced solubility in water and common organic solvents. UV irradiation of dextran-methacrylate by a long-wave UV lamp (365 nm) generated a photocrosslinked hydrogel. This dextran-methacrylate hydrogel showed a range of swelling ratio from 67 to 227% and exhibited an increase in swelling ratio with a decrease in methacrylate substitution. The pH of the swelling media did not affect the swelling behavior of the dextran-methacrylate hydrogels at all the degrees of substitution used. Special cryofixation and cryofracturing techniques were used to prepare aqueous swollen dextran-methacrylate hydrogel samples for SEM observation of their surface and interior structures. A unique three-dimensional porous structure was observed in the swollen hydrogel but was absent in the unswollen hydrogel. Different pore sizes and morphologies between the surface and the interior of swollen hydrogels also were observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.