Abstract

Degradable polyurethane elastomers were synthesized using a diester chain extender. The chain extender was synthesized by a diesterification reaction between L-phenylalanine and 1,4-cyclohexane dimethanol to yield a diester, diamine. Soft segment chemistry (polycaprolactone diol, PCL and polyethylene oxide, PEO) and molecular weight were varied and the impact on polyurethane physicochemical and degradation characteristics was evaluated. It was found that the PEO containing polyurethanes absorbed large amounts of water while the PCL containing ones did not, indicating a large difference in bulk hydrophilicity. The rate of water vapor permeance (WVP) through the polyurethane films generally followed the water absorption trends. However, soft segment crystallinity, noted by DSC, for the PCL containing polyurethanes served to reduce WVP values with increasing PCL molecular weight. Polyurethane surface characterization was carried out by water contact angles and XPS. The PEO containing polyurethanes exhibited low contact angles in comparison with the PCL ones. In addition, angle-resolved XPS demonstrated soft segment surface enrichment in all cases typical for phase segregated materials. Significant variation in the physicochemical properties of the experimental polyurethanes was observed indicating potential use in a variety of biomaterials applications. An in vitro degradation study was carried out by incubating the polymers in 0.1 M TBS at 37°C, pH 8.0 for up to 56 days. Degradation was followed by measuring mass loss, change in molecular weight by GPC and surface alteration by scanning electron microscopy. The polyurethane containing PEO was found to exhibit substantial mass and molecular weight loss over 56 days resulting in a porous material of little strength. In contrast, the PCL containing polyurethane displayed modest mass and molecular weight loss after 56 days. This polyurethane retained its strength and displayed little surface alteration after 56 days in buffer. It was hypothesized that differences in polyurethane hydrophilicity as well as initial molecular weight may have been responsible for the dramatic difference in degradation rate observed here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.