Abstract

A novel β-cyclodextrin–carboxymethyl cellulose–graphene oxide composite material (β-CD–CMC–GO) was synthesized, and its application as excellent adsorbents was carried out for removal basic fuchsin (BF) in aqueous solution. The structure and morphology of β-CD–CMC–GO composite material were characterized by using FTIR, SEM, TEM, XRD, TG and DSC methods. The composites could remove basic fuchsin from aqueous solution efficiently. The adsorption experiment was carried out and the optimum experimental conditions were ascertained. The highest adsorption efficiency was obtained 97.3% at 0.015 g/mL dosage of β-CD–CMC–GO, the temperature of 25 °C and time of 2.5 h. Adsorption kinetics, adsorption isotherm and adsorption thermodynamic were used to analyze the adsorption system. The experimental data of adsorption kinetics of system were well followed by pseudo-second-order equation. The adsorption isotherm data were fitted using Langmuir isotherm model and Freundlich isotherm model. The maximum adsorption capacity of basic fuchsin reached 58.65 mg/g. The thermodynamic parameters indicated that the adsorption process was spontaneous and exothermic. The adsorbent has excellent regeneration ability and reproducibility. The proposed method shows that the β-CD–CMC–GO could be applied to removal of basic fuchsin in wastewater with satisfactory result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call