Abstract

Four novel phthalonitrile-capped polyarylene ether nitrile oligomers containing trifluoromethyl groups (FPEN-Ph) with different molecular weight were designed and synthesized by adjusting the ratio of bisphenol AF (BPAF) and 2,6-dicholorobenzonitrile (DCBN). The molecular structure of FPEN-Ph oligomers were characterized and analyzed by FTIR, 1HNMR and Gel permeation chromatography. Their curing behaviors were studied by Differential scanning calorimetry and rheological tests, and curing kinetics were also discussed by gel method in detail. The glass fiber cloth reinforced FPEN-Ph composites (FPEN-Ph/GF) had flexural strengths of 415.9–497.5 MPa, shear strengths of 34.5–50.5 MPa, and glass transition temperatures ( Tgs) in the range of 211.3°C–416.6°C. The initial thermal decomposition temperatures ( T5%) of various FPEN-Ph cured products were higher than 500°C under nitrogen. Meanwhile, Fracture morphologies showed that the GF/FPEN-Ph composites had excellent interfacial adhesion between FPEN-Ph matrix and GF reinforcement. Herein, the FPEN-Ph resin could be a good candidate for high-performance polymeric composites and the advanced FPEN-Ph/GF composites can be used under high temperature environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call