Abstract
AbstractPolycrystalline samples of Cu3TaIn3Se7 and CuTa2InTe4 were synthesized by the usual melt and anneal technique. X‐ray powder diffraction showed a single phase behavior for both samples with tetragonal symmetry and unit cell parameter values a = 5.794 ± 0.002 Å, c = 11.66 ± 0.01 Å, c /a = 2.01, V = 391 ± 1 Å3 and a = 6.193 ± 0.001 Å, c = 12.400 ± 0.002 Å, c /a = 2.00, V = 475 ± 1 Å3, respectively. Differential thermal analysis (DTA) measurements suggested a complicated behavior near the melting point with several thermal transitions observed in the heating and cooling runs. From the shape of the DTA peaks it was deduced that the melting is incongruent for both materials. Magnetic susceptibility measurements (zero‐field cooling and field cooling) indicated an antiferromagnetic character with transition temperatures of T = 70 K (Cu3TaIn3Se7) and 42 K (CuTa2InTe4). A spin–glass transition was observed in Cu3TaIn3Se7 with Tf ≈ 50 K. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.