Abstract

Mosquitoes need to be eradicated as they can spread deadly diseases. Cry toxic proteins from Bacillus and zinc oxide nanoparticles also can tremendously control pest and bacterial pathogens. With this reference, the Ac-ZnO NPs was effectively synthesized using Acorus calamus rhizomes extract where after incorporated with bacterial cry toxic protein (Btp) to produce Btp-Ac-ZnO nanocomposites. The XRD and FTIR, disclose the crystalline form with an average size of 17.47 nm and the possible biomolecules of Btp-Ac-ZnO NCs. SEM and TEM make known the well agglomerated and cone shape of Btp-Ac-ZnO NCs. The NCs show concentration-dependent antioxidant activity. Btp-Ac-ZnO NCs drastically arrest the formation of biofilm by the pathogenic bacteria such as E. faecalis, S. aureus, P. aeruginosa, and P. vulgaris at 100 μg/mL. All the above, the Btp-Ac-ZnO NCs exhibits superior larvicidal activity against three mosquito vectors namely Ae. aegypti, An. stephensi and Cx. quinquefasciatus with LC50 values of 43.76, 39.60 and 37.13 μg/mL respectively. Besides, the biological enzymes are significantly reduced in the treated larvae than that of untreated one, which indicates the effect of Btp-Ac-ZnO NCs. Since, the Btp-Ac-ZnO NCs could be utilized against the pathogenic bacteria, and its biofilm structure, and also in the vector control sectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call