Abstract

Chromium–zirconia (Cr-ZrO2) composite coatings were developed on low-carbon steel substrate by direct current (DC) and pulse electrodeposition (PED) technique with different pulse frequency and duty cycles to enhance mechanical properties of the coating. The phases and morphology of the coating were studied with scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. Surface mechanical properties were analyzed by micro-hardness and ball-on-plate wear study. It was found that pulsing and higher pulse frequencies refine the matrix and increase the ZrO2 content in the coating. Apart from fine structure and dispersion, crystallographic orientation of Cr matrix also gives its effect on hardness and wear properties. Wear mechanism was found to be mainly abrasive in nature with little adhesive inclination in case of DC deposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.