Abstract
ABSTRACTInitial results en route toward construction of complex magnetic core-shell silica and organosilica nanotheranostics are presented. Magnetite nanoparticles are synthesized by three different methods and embedded within mesoporous silica and organosilica frameworks by different surfactant-templated procedures to produce three types of core-shell nanoparticles. Magnetite nanoparticles (15 nm in diameter) are embedded within mesoporous silica nanoparticles to produce cell-like material with predominantly one magnetite nuclei-resembling core per nanoparticle, with final particle diameter of ca. 150 nm, specific surface area of 573 m2/g and hexagonally structured tubular pores (2.6 nm predominant diameter), extended throughout the volume of nanoparticles. Two forms of spherical core-shell nanoparticles composed of magnetite cores embedded within mesoporous organosilica shells are also obtained by employing ethylene and ethane bridged organobisalkoxysilane precursors. The obtained nanomaterials are characterized by high surface area (978 and 820 m2/g), tubular pore morphology (2 and 2.8 nm predominant pore diameters), different diameters (386 and 100-200 nm), in case of ethylene- and ethane-composed organosilica shells, respectively. Different degree of agglomeration of magnetite nanoparticles was also observed in the obtained materials, and in the case of utilization of surfactant-pre-stabilized magnetite nanoparticles for the syntheses, their uniform and non-agglomerated distribution within the shells was noted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.