Abstract

A series of core–shell polyacrylate latexes with different fluorine/silicone monomer concentrations were prepared successfully by seeded emulsion polymerization. Dodecafluoroheptyl methacrylate and perfluorooctyl methacrylate with different fluorinated side chains were employed as fluorinated monomers, and γ-methacryloxypropyl triisopropoxidesilane (MAPTIPS) was used as a silicone-containing monomer as well as a self-cross-linking agent. The morphology and chemical structure of the latexes were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, and differential scanning calorimetry, and the self-stratification properties of the latex film were verified by X-ray photoelectron spectroscopy and static contact angle measurement. The results showed that the fluorine/silicone-containing polyacrylate latexes presented a uniformly spherical core–shell structure, and the latex films displayed a preferential distribution of fluorinated composition near the surface, which was more remarkable with the synergism effect between the fluorine monomer and MAPTIPS. Additionally, the hydrophobicity and oleophobicity of the latex films exhibited high relevance with the fluorine/silicone monomer concentrations as well as the fluorinated side-chain structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call