Abstract

Using polycarbonate track-etch membranes (Whatman), copper telluride (Cu1.75Te) nanowires of diameter 100 nm and 50 nm have been synthesized electrochemically via template-assisted electrodeposition technique on indium tin oxide (ITO) coated glass from aqueous acidic solution of copper (II) sulphate (CuSO4·5H2O) and tellurium oxide (TeO2) at room temperature (30 °C). Scanning electron microscopy (SEM) reveals the morphology of the nanowires having uniform diameter equal to the diameter of the template used. X-ray diffraction (XRD) pattern showed the structure corresponding to the hexagonal structure of copper telluride and single-crystalline. Using UV–visible spectrometry, the optical band gap of copper telluride nanowires was found to be 3.092 eV for 100 nm and 3.230 eV for 50 nm diameters. The photoluminescence (PL) studies shows higher intensity and broad spectrum in the blue region (450–475 nm) of visible light spectrum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call