Abstract

AbstractIn this study, a series of aliphatic–aromatic poly(butylene terephthalate‐co‐ε‐caprolactone) (PBTCL) copolyesters were synthesized from various monomeric compositions of terephthalic acid (TPA), 1,4‐butanediol (BDO), and ε‐caprolactone (CL) in the presence of tetrabutyl titanate (Ti(Obu)4) and stannous octoate (Sn(Oct)2) as catalysts through a combination of polycondensation and ring opening polymerization. A significant increase in the melting temperature (Tm) of copolyesters was observed by increasing the TPA/(CL+TPA) molar ratio, starting from the low end (Tm 66.2°C) of pure poly‐ε‐caprolactone PCL upward. We found that PBTCL‐50, which has a TPA/(CL+TPA) 50% molar ratio and polycondensation at 260°C for 1.5 h, resulted in a proper Tm of 139.2°C that facilitates thermal extrusion from biomass or other biodegradable polymers of similar Tm. The number–average molecular weight (Mn) of 7.4 × 104 for PBTCL‐50 was determined from the intrinsic viscosity [η] by using the Berkowitz model of Mn = 1.66 × 105[η]0.9. Good mechanical properties of PBTCL‐50 have been shown by tensile stretching experiment that indicates tensile strength, elongation, and Young's modulus are 11.9 MPa, 132%, and 257 MPa, respectively. Polymers with aforementioned properties are suitable for manufacturing biodegradable plastic films for downstream agricultural applications or merely for trash bag. This article reveals that the PBTCL‐50 contains all five monomers with different molar ratios and characteristical linkages between each other. The novel structure was furthermore analyzed by 1H‐ and 13C‐NMR spectroscopy. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.