Abstract
Polymeric biomaterials play a key role in enhancement of lengthy nerve regeneration and various types of scaffolds were used to pave the way for nerve regeneration. Electrospun fibrous scaffolds have special potential applicability in controlling the cell behaviors such as adhesion, growth, proliferation and function. This study attempted to design a conductive and porous fibrous scaffold containing polycaprolactone (PCL) and polyaniline (PANI) with controllable degradation rate by adding urethane groups in scaffold structures. FTIR and NMR analysis was used to characterize the chemical bonds. Morphology, porosity, conductivity and degradation rate of scaffolds were also evaluated. To assess the cell–scaffold interaction, PC-12 cell line was cultured on the scaffolds. Results showed that the degradation rate of composite samples significantly increased in 50 time period. It seems that these results suggest that the composite fibrous scaffolds having proportions of UPCL/PCL/PANI45:20:35 exhibit the most balanced properties that meet all of the required specifications for neural cells and possess a potential application in neural tissue engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Polymeric Materials and Polymeric Biomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.