Abstract

Nonwoven polyacrylonitrile-polypyrrole (PAN-PPy) core-shell nanofiber mats were prepared through the growth of PPy layers on electrospun PAN nanofibers via a two-step vapor-phase polymerization, i.e., the wet-coating of ferric tosylate (FeTos) oxidants on PAN nanofibers followed by exposure to pyrrole monomers in the gas phase. Under the conditions ([FeTos] = 10 wt%, reaction time = 15 min, temperature = 15 degrees C), the PPy polymerization procedure led to both a uniform coating over the PAN surface with an average thickness of 18 nm and cross-linkages among the nanofibers without a noticeable change in the highly porous nanofibrous structures. The oxidant concentration and polymerization time were found to be key parameters for achieving a good nanostructured core-shell fiber mat. FT-IR, XPS, XRD and conductivity measurements confirmed the synthesis of Tos-doped PPy with some degree of crystallinity and a high conductivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call