Abstract

Abstract The synthesis of composites of n-dodecylbenzene sulfonate-doped polyaniline (PANI-DBSA) and poly(styrene–metal acrylate) ionomers is presented. The ionomers of lithium, sodium and potassium were prepared by emulsion polymerization at different styrene-to-metal acrylate weight ratios. The composites made with the potassium ionomer exhibit the largest conductivity due to the higher content of acid groups that allows stronger interactions with the PANI chains compared to the Na and Li ionomers. IR spectroscopy suggests that hydrogen bonding interactions take place between PANI-DBSA chains and that amine salt groups form by chemical reactions between the amine groups of PANI and the acid groups of the ionomer. X-ray diffraction reveals that the ionomer affects the structural ordering of PANI-DBSA. All the PANI-DBSA–ionomer composites show higher thermal stability than the PANI-DBSA material. SEM shows a characteristic agglomerate morphology in all the composites. The composite showing the highest electrical conductivity was mixed with poly(n-butyl methacrylate) (PBMA) by extrusion and the films obtained have higher electrical conductivity than that of films of the same system without ionomer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.