Abstract

This study introduces a sustainable method of producing a graphene nano sheet (GNS) from coconut shells and investigates its application in GNS, Ni/GNS, and Zn/GNS electrodes for advanced energy storage devices. The GNS was synthesized in a scalable manner using a pyrolysis and impregnation technique, with its successful synthesis verified by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and electrical conductivity measurement characterizations. The study highlights the enhanced performance of Zn/GNS electrodes, which outperform both pure GNS and Ni/GNS variants. This superior performance is attributed to the smaller particle size of Zn (mean = 2.356 µm) compared to Ni (mean = 3.09 µm) and Zn’s more favourable electron configuration for electron transfer. These findings demonstrate the potential of bio-derived GNS composites as efficient, high-performance electrodes, paving the way for more sustainable and cost-effective energy storage solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.