Abstract

Cobalt nanoparticles were produced by employing the liquid-phase reduction method and hydrazine. The effect of citric acid additives on the formation and growth mechanism of cobalt nanoparticles was investigated using polarization methods. The cobalt nanoparticles produced in 0.2 M cobalt sulfate and 5 M hydrazine at 298 K had a spherical shape with a diameter of 400 nm. The dendritic nanoparticles formed with the decreasing of hydrazine concentration at 298 K. On the other hand, dendritic large particles are confirmed at 353 K. It was confirmed that the reduction reaction progressed with the addition of citric acid, and a hexagonal close-packed (εCo) phase was formed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.