Abstract

Nanocomposite materials provide the possibility for multifunctional properties in contrast with their more-limited single-component counterparts. Here, we report the synthesis and characterization of the first all-inorganic core/shell hybrid magnetic-optical nanoparticle, cobalt/cadmium selenide. The core/shell nanocrystals are prepared in a facile one-pot reaction, and their microstructure is analyzed using low- and high-resolution transmission electron microscopy. Using magnetic and optical characterization, we demonstrate bifunctional behavior, whereby the core retains the magnetic properties of the starting Co nanoparticle, and the shell emits similarly to a single-component CdSe nanoparticle. Interestingly, while the coercivity was found to be unchanged by shell formation, the blocking temperature for the composite structure was observed to be substantially lower (Co: >350 K; Co/CdSe: 240 K). In addition, we observed that at low temperatures (20 K) shell CdSe photoluminescence (PL) decay was very rapid (<1 ns). In contrast, nanocrystalline CdSe PL decay is typically much slower at such temperatures (>50 ns). Finally, we propose possible explanations for the unusual magnetic and optical behavior of the core/shell hybrid nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.