Abstract

We report a new family of clickable poly(ethylene glycol) (PEG)-grafted polyoxetane brush polymers as a potential modular platform for delivery of drugs and imaging agents. 3-Ethyl-3-hydroxymethyloxetane (EHMO) monomer reacted with propargyl benzenesulfonate in the presence of sodium hydride to yield alkyne-substituted monomer (EAMO). Subsequently, cationic ring-opening polymerization using boron trifluoride diethyl etherate catalyst and 1,4-butanediol initiator produced P(EAMO) homopolymer with a DP of ∼30 (30 alkynes per chain). Methoxypoly(ethylene glycol) azide (mPEG750-azide) prepared from mPEG750 (750 g mol–1) was grafted to P(EAMO) via copper(I)-catalyzed alkyne–azide cycloaddition (CuAAC) click chemistry. Water-soluble cytocompatible P(EAMO)-g-PEG brush polymers with controlled degrees of PEGylation were synthesized by varying the feed molar ratio of mPEG750-azide to alkyne (25:100, 50:100, 75:100, and 100:100). 1H NMR, GPC, end-group analysis, FTIR, and DSC were applied for polymer characterizati...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.