Abstract

This work discusses the physicochemical and antimicrobial characteristics of chitosan-corn starch eco-nanocomposites integrated with silica@Ag nano-spheres. These composites were synthesized through sol-gel polymerization and subsequently exposed to simulated body fluid (SBF). The incorporation of Ag into the eco-nanocomposites led to a decrease in diffuse reflectance across the entire wavelength range. The dielectric permittivity exhibited an increase up to 52.1 at a frequency of 100 kHz, while the ac conductivity reached a value of 5.2 ∗ 10−6 (S cm−1) at the same frequency for the sample with the highest Ag content. The study utilized XRD and FTIR techniques to examine the materials before and after in vitro testing and evaluated the antibacterial properties of the eco-nanocomposites against several pathogenic microorganisms, including Staphylococcus haemolyticus, Staphylococcus aureus, Klebsiella pneumoniae, and Escherichia coli, using the agar diffusion method. The eco-nanocomposites demonstrated bioactivity by forming a hydroxy appetite layer on their surfaces and were capable of releasing silver (Ag) at concentrations of 1.3, 1.9, and 2.5 mol%. This study suggests that chitosan-corn starch-SiO2-based doped with Ag eco-nanocomposite has the potential for various applications, including biomedical and environmental fields, where their antibacterial properties can be utilized to combat harmful microorganisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.