Abstract

Chitosan has gained an increased interest of researchers due to its nontoxic, biodegradable, biocompatible and renewable properties as well as its antimicrobial activity. In this work, a series of chitosan-based waterborne polyurethane (CS-WPU) emulsions were synthesized. The synthesis was accomplished by using a two-step emulsion polymerization process. The pre-polymer was prepared using hexamethylene diisocyanate (HDI) and polyethylene glycol (PEG; MW = 6 kDa). Afterwards, the chain extension step was performed by using different mole ratios of chitosan. Moreover, the effect of chitosan on physicochemical properties of the emulsion was studied. To evaluate textile performances such as tear strength, tensile strength and pilling, the CS-WPU emulsion was applied on different plain weave polyester cotton dyed and printed fabrics by using pad-dry cure techniques. The antimicrobial activity of the treated and untreated fabrics was also evaluated via the agar diffusion method. The results displayed that incorporation of chitosan has prominent effects on tensile tear strength, tear strength and antimicrobial activity of polyester cotton dyed and printed fabrics. Moreover, antimicrobial activity was considerably enhanced as the mole ratio of the chitosan was increased. The results emphasize that CS-WPU based on HDI exhibits a better performance as compared to IPDI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call