Abstract

Abstract Chemical-looping steam methane reforming (CL-SMR) is based on oxidation–reduction cycles through a solid–gas reaction with an oxygen carrier (OC) for producing high purity hydrogen or synthesis gas. In this study, Ce promoted Ni-based OC was synthesized via co-impregnation method and applied in this process. The presence of CeO2 nanoparticles in the framework of nickel oxide doped SBA-16 oxygen carrier could significantly improve the uniformity and distribution of nickel oxide nanoparticles duo to the restrictional influence of the SBA-16 framework and the strong interaction of nickel and cerium. The reaction temperature (500–750 °C), Ce loading percentage (3.9–23.3 wt. %) and Ni loading percentage (10–30 wt. %) were studied in order to investigate and optimize the catalyst structure and process temperature with maximizing the average CH4 conversion and H2 production yield in this process. The synthesized oxygen carriers were characterized by X-ray powder diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) techniques. The redox results revealed that 20Ni-11.6Ce/S16 oxygen carrier had the high catalytic activity of about 100% average CH4 conversion and 86.98% H2 production yield at reduction temperature of 700 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.