Abstract
The stable and crystalline phase of different surfactants (CTAB, PEG and SDS) capped CeO2 nanoparticles were directly synthesized by chemical precipitation method at room temperature. The effects of surfactants on the structural and optical properties of nanoparticles are characterized. The optical properties of the nanoparticles were investigated by UV–visible and PL spectroscopy. The effects of surfactants with observed band shifts are due to quantum confinement effect. The optical band gap values are determined by simple energy wave equation and Tauc plot method. The observed particle sizes are very closer to the Bohr exitonic radius. The emission bands such as violet, blue, green and orange are observed in PL spectra. The PL integrated intensity ratio of the UV emission to the deep-level green emission (IUV/IDLE) for CTAB, PEG and SDS capped CeO2 nanoparticles are observed. The XRD measurement shows that CeO2 has cubic fluorite structure having the particle size 6–10nm. The lattice strains were detected by Williamson–Hall plot method. The surface morphology of the nanoparticles is studied by SEM and FESEM analysis. TEM images show that the particles are nearly spherical in shape with diameter of 5–10nm. Using FTIR spectra, the functional groups of the ceria are identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.